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1.0 Foreword

This report is intended to present a description of the work performed for the

project to model data communications error through the use of Markov models. It is

intended to provide a more detailed narrative description of the work performed than is

usually included in the quarterly progress reports, but eliminates the accounting

information that is available in the quarterly reports.

This document, being the final project report, covers the entire time period of the

project. It includes all work accomplished for the duration of this project and supercedes

any and all previous project narratives.

In order to make this document more understandable. the sections have been

numbered in accordance with the Statement of Work associated with this project. Hence,

most of the material is covered under section 4 and the numbers do not necessarily fall

into sequence. Most of the figures mentioned in the text are included in Appendix A of

this document.
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2.0 Strategy for Reducing Gap Length Distribution to a Markov Model

The simulation of errrs occurring over a communications channel provides a less

costly alternative for testing communications systems than running the system over the

actual channel. A simple method of simulating these errors assumes that errors are

independent and produces the correct percenta ::e of errors for a given channel. For actual

channels, errors are not independent, but tend to occur in "bursts."

Such "bursty" channels, or channels "with memory", have been successfully

modelled using finite state Markov chains. After some introductory information about

Markov models, a procedure for obtaining Markov models for communications channels

will be presented.

2.1 Markov Processes

Markov processes are a subset of stochastic processes. A stochastic process is a

family of random variables defined over some sample space. The elements of the sample

space can represent different states. A process changes states as time progresses.

Discrete-time processes can change states only at the end of a time interval of some given

length. Stationary processes are time independent. They exhibit the same behavior

regardless of when they are observed.

A Markov process is a discrete-time stochastic process with a finite state space that

satisfies the Markov property. Isaacson and Madsen define the Markov property by

stating, "A stochastic process {Xj}, k=l, 2, 3 .... with state space S {1, 2, 3, . . ) is said

to satisfy the Markov property if for every n and all states i1, i2, .... , i, it is true that
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P(X.=Qi.l •_l=i•.IX,.-2=i. 2, ... ,XI=i 1) = P(X.=i IX._l=i _l)/I

In other words, the current state of a Markov process is conditional only upon the

previous state and not upon any other past states[12].

A Markov model is similar to a finite state machine. The Markov process

transitions from state to state according to transition rules. However, instead of having

transition rules based on symbols read from some input, Markov processes have transition

rules based on random probability. Markov models can be represented as NxN matrices

with entries Pij. For such a matrix, N is the number of states, i and j range from 1 to N,

and pij is the probability of transitioning from some state i to some state j W-ith no

intermediate states.

A Markov process travels at random between the possible states. The probability

of run lengths corresponding to each state can be expressed as weighted exponentials.

This observation is based on joint probabilities. For example, let P,(x) be the probability

that a process is in state 1 for at least x time intervals and assume the Markov model in

question has only 2 states. Then P1(x) is equal to the joint probability of the process

transitioning from state 2 to state 1 followed by the process transitioning from state 1

back to itself at least x-1 times. This is mathematically represented as

X-1
P I(X) =2pi

or
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P1 (x)t:Ae•

A =-P--'Pil
p11

a=ln(p,,)

This expression could easily be expanded for models with more than two states. If

the Markov model had three states, the following expression would result:

z-1Pj(x)=(P2j-*'P3) ;1u

2.2 Modelling Communications Channels as Markov Processes

The errors produced by a communications channel can be represented as a string

of bits. In this bit string, a bit has the value 1 if the channel transmits an incorrect bit

and 0 if the channel transmits the correct bit. When this representation is used, the

transmitted bit string XOR-ed with the error bit string produces the received bit string

One statistic that can be analyzed for a given error bit string is the error-free run

distribution, or gap length distribution. A gap is defined as a series of consecutive error-

free bits bounded on each end by at least one error bit. A gap begins with the first 0

following an error bit and ends with the last 0 preceding the next error bit. The gap

length distribution is the probability that a gap of length m or greater will occur, which

can be written as P(0" I 1) for m = 1, 2, 3. ...
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Another distribution of interest is the burst length distribution. A burst can be

defined as a series of consecutive error bits bounded on each end by at least one non-error

bit. A burst begins with the first I following a non-error bit and ends with the last I

preceding the next non-error bit. Similar to the gap length distribution, the burst length

distribution is the probability that a burst of length m or greater will occur, or P(Ir 1 0) for

m = 1, 2, 3....

Stephen Tsai [41 proposes an N-state Markov model to simulate errors that occur

on binary communications channels with memory. Each state in the model has an

associated output of eitner 0 or 1. As the corresponding process transitions from state to

state, an error bit string is produced. The model proposed by Tsai has N-I non-error

states and a single error producing state. For ease of notation, the error state is always

the Nh state.

Tsai also specifies that transitions between two non-error states wv.Iil not occur.

When the process is in a non-error state, the only transitions that can occur are the

transition to the error-producing state or the transition from the current state back to

itself. The corresponding probability matrix would have entries along the diagonal for

transitions from a state to itself, along the NT" column for transitions from non-error

states to the error state, and along the N" row for transitions from the error state to the

non-error states.

For a Markov model with these criteria, the gap length distribution corresponds to

the probability of runs of given length in the non-error states. For a given non-error

state, i, the probability of its producing a run of x non-error bits is

5



P,(x) --A,,e"X

P,

For an N-state Markov model where each non-error state contributes an exponential term,

the probability of a gap of length x occurring is

P(011) = Ale*aX+A2 ea".' ... ÷A,,eja'-,

The burst length distribution corresponds to the probability of runs of given length in the

error state. The probability of a burst of lerigth x occurring is

P(1O0) Be b,

B (PIjY*Pz + -' *. P -IV)
PNN

b -n(p&).

Tsai's proposed Markov model for communications channels vw-ith memory is based

on the observation that the gap length distribution for a channel can be closely

approxdmated by the sum of weighted exponential terms as described above. Several

researchers have shown that this is possible for actual channel data. This model also

assumes that the burst length distribution can be expressed as a single weighted

exponential.

6



2.3 Procedure for Transfornir-, Channel Data to Markov Models

To obtain a Marko- jodel for a given binary communications channel, gap length

data must be collecLed. A count of the number of gaps of eacha length is necessary, From

these couu-ts, observed values for P(0m1 1) can be computed. Once these values are

computed, a curve with the form mentioned above is fit to the resulting points.

The method for fitting a curve to data points depends on the size of the sample and

the level of confidence in those data points. For a small sample size where confidence in

each data point is high, it may be desirable to interpolate a curve that includes all points,

For larger samples where some variance of the data points is known to exist, finding a

curve that comes close to all the points but doesn't necessarily include each one is more

appropriate.

Computer tools exist that make curve fitting easier. However, these tools still

require some human involvement. The user must usually specify the form of the

resulting equation and some initial values for the parameters of that equation. These

initial guesses can often make the difference between a good final fit and a bad final fit.

Even if a good final fit results, bad initial guesses cause the curve-fitting program to

perform more iterations before converging to a final equation.

The following explanation addresses how to make good initial parameter guesses

for an equation that takes the form of the sum of weighted exponential terms. These

guesses will be made based on visual inspection of the plotted data points and will be

used as input to a non-linear least-squares regression tool.
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For all examples herein, the data points represent statistics obtained from

simulated data communications channels. The x-value of each point represents the length

in bits of a gap between bursts of errors. The y-value represents the probability that a

gap longer than or equal to x bits will occur.

2.3.1 Initial Guesses for One Term

The data points can be fit to an equation that is the sum of one or more

exponential terms according to the form presented above. The parameters A, and a, must

be determined for each term to provide the closest fit to the data points involved.

Initially, we will consider the simplest case of an equation with only one term, Ae'".

Initial guesses can be made from a plot of the error-free run distribution data

points. The exponential curve where both A and a are equal to 1 is shown in Figure 1.

For the gap length data involved in this discussion, x (representing the number of bits in

an error-free gap) will never have a negative value. Therefore, we can focus our attention

to only positive x values.

Figures 2 and 3 shlow the effects of varying A values and a values. As A increases,

the height of the curve increases. As a increases, the drop in y values becomes more

gradual. These two observations are the basis for our initial guesses.

Figure 2 shows that A is related to the maximum height of the curve. More

specifically, A=y where xO-0. However, the minimum x value possible for the data points

involved is 1, and determining from those data points where the curve will cross the y-

axis is often difficult. This task is simplified by plotting the data points with the y-axis

8



2.

0 21 4 .0

0,4

0.2.

Figure 2. Single term exponential with varying A.

log scale, The curve becomes a straight line which can be extended to the y-axis, thus

providing a close approximation for A.

9



. ... ....

0.1 a P ' A " -

O.G \\' \\

0 2 IC 81

Figure 3. Single term exponential with varying a.

Figure 3 shows that a is related to the rate at which, the y values decrease. This

property can be better observed by again plotting with the y-axis log scale. Then

a=slope. This slope can be determined by plotting the data points as (xLn(y)) rather

than (x,y) and dividing the increase in the y direction by the increase in the x direction.

As an example of making initial parameter guesses from data points, examine

Figure 4. Replotting with log scale y (Figurf- 5) makes determining the y-intercept easy.

The value for A is approximately 0.9. The plo, of (x,ln(y)) pairs (Figure 6) produces a

line that decreases 3 in tha y direction over the x range 1-6. Therefore, a is

approximately -3/5 or -0.6. (The actual equation used to simulate these data points was

0.8 784e(-0.5407",).
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Figure 4. Error-free run data produced by Markov model simulation.
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Figure 5. Error-free run data plotted with logscale y.

2.3.2 Initial Guesses for Multiple Terms

For actual binary communications channels, the gap length distribution often

corresponds to an equation with more than one exponential term. Making initial guesses
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-4.

Figure 6. Error-free run data plotted as (x,ln(y)).

for such an equation is an extension of guessing for one term. As for a single term, the

data is plotted with the y-axis logscale to simplify the task of making initial guesses.

When a single exponential term was plotted with the y-axis logscale, the resulting

plot was a straight line. For more than one term, the plot will show linear segments

separated by curved portions. The number of linear segments suggests the number of

exponential terms necessary to approximate the data.

For each term, the A, value is related to the y-intercept of the corresponding line

segment. Because the terms are added together, the A, value for each term is the y-

intercept of the line segment minus the y-intercept of the previous term, starting with the

term that has the smallest y-intercept.

Once the A. values have been calculated, the a, values are determined based on the

slope of the curve within the range of each line segment. As for the single exponential

12
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Figure 7. Two term exponential.

term, the data must be plotted as (x,in(y)) to determine the slope. Figure 7 shows the

curve of an equation with two weighted exponential terms. The plot can be described as a

line segment approximately between 5 and 25 along the x-axis, a line segment

approximately between 0 and 3 along the x-axis, and a curved portion between the two

line segments. Starting with the line segment with the lowest y-intercept, the value for

A1 is 0.2. The value for A. is 1.0-A,, or 0.8.

The plot of (x,ln(y)) between 5 and 25 is shown in Figure 8. From this plot, the

slope of this line segment can be calculated as (-4.75 - -2.75)/(25 - 5) or -0.1. This is the

estimated value of a,. The plot of (x,/n(y)) between 0 and 3 is shown in Figure 9. From

this plot, the slope can be calculated as (-2.0 - 0)/(3 - 0) or -0.67. The initial guess for this

equation would be 0.2e'-" + 0.8e. 6 7'. The resulting curve plotted with the original curve

is shown if Figure 10.
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Figure 8. Two term exponential plotted as (xhn(y)) {5<x<251.
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Figure 9. Two term exponential plotted as (x,ln(y)) (O<x<3).
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Figure 10. Guessed curve with original curve.

2.3.3 Obtaining the Markov Probability Matrix

The initial guesses obtained as described above are used as input to a software

package that performs a least-squares fit to the original data points. For actual

communications channels, the task of segmenting the data into line segments can be

difficult. After the fitted curve is obtained, the resulting model should be analyzed to see

if an additional term should be added. This can be done by plotting the fitted curve

concurrently with the original data and observing whether any range of points lies far

away from the fitted curve.

Once a satisfactory fitted curve has been obtained, its paim- eters are used to

calculate the entries for a Markov probability matrix. The formulas used to compute

these entries appear below. (I& i ý (N-1)))
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pLJ% = e=

PIJ =

p•=1- Cl+z+.*•l•

3.0 Strategy for Evaluating the Markov Model

As was described in the preceding section, the use of Markov models for simulating

communications channels is based on the observation that the gap length distribution for

such channels can be expressed as the sum of weighted exponential terms. The resulting

Markov model can be evaluated by how well the fitted exponential equation fits the

original data. Three possible means of analyzing that fit are the sample standa-rd

deviation (s), the correlation coefficient (R2), and the plot of residuals.

The sample standard deviation is the square root of the variation of the

observations being analyzed.

i:
$ = i-i

n-I

3tandard deviation is preferred over variance because it can be expressed in the same

units as the observations. The standard deviation approaches 0 for a perfect fit.

The correlation coefficient expresses the proportion of the variation of y's that can

be attributed to the specified relationship with x.

16



r2 = (s *2

where

S.= -x2_( )

S = E y2_y)2
tyl

YY n
= 'Exy - -( )EY

ThbP correlation coefficient approaches 1 for a perfect fit.

Residuals are the values for each data point representing the distance in the y

direction from the point to the fitted curve. Curve fitting is done to minimize the sum of

the squared residual values. When the values for all residuals are plotted, ranges along

the fitted curve that do not fit the data points are made evident by groups of residuals

with relatively large values. Such plots can be used to determine whether additional

terms are needed and within what x range these terms may lie.

The analysis techniques mentioned above focus on how well the gap length

distribution is being modelled. Another important distribution to be considered is the

burst length distribution. The burst length distribution for the model as related to the

transition probabilities has been specified in earlier discussion. To verify that the burst

17



characteristics of the channel are being modelled, this distribution can be compared to the

observed burst length distribution values.

Often, only gap length statistics are accumulated across a channel. In the absence

of burst length data, a rougher comparison can be made between the observed bit error

rate across the channel and the theoretical bit error rate calculated from the Markov

transition probability matrix. The theoretical bit error rate is calculated as the steady-

state probability that the channel will be in the single error state at any given time. This

steady-state probability vector for all states ,,J can be obtained from the transition

probability matrix, P, by making use of the following equations:

and

The theoretical bit error rate would be n.T, assuming state n is the e. Tor state.

This value can be compared to the observed bit error rate of the data communications

channel in question to obtain a broad measure of how well the Markov model duplicates

the burst characteristics of the original channel. This, along with the comparison

measures for gap length characteristics presented above, provide the means for evaluating

how well a Markov model simulates the channel it is meant to model.

18



The method for obtaining Markov models from gap length data and evaluating the

resulting models was first used with output from published Markov models as input to

the procedure. Markov matrices very similar to those used as input were obtained.

Standard deviation values were small, and correlation coefficients were very close to one.

When the resulting Markov model had the same number of states as the original input

model, the residuals were small. Also, the burst distributions for the original and

resulting Markov models were very similar.

The method was also used with data from a "heuristic" model as input. The burst

characteristics for the "heuristic" model and the resulting Markov model were very

different. More discussion of the problems encountered with the "heuristic" model is

included elsewhere in this report.

Some live data collected between Rome Laboratory and Verona, IN\Y, was also used

as input to this procedure. For this actual channel data, determining the appropriate

number of states necessary in the Markov model was more difficult. As more states were

used, the measures related to the gap length characteristics of the channel improved. For

example, a three-state model for one data set from this channel produced a standard

deviation value of 0.0104 and a correlation coefficient of 0.9905 while a five-state model

produced a standard deviation of 0.0029 and a correlation coefficient of 0.9993.

19



4.0 The Meteor Burst Model

4.1 Review of Meteor Burst Communications

Meteor burst communications is a type of communications based on the reflective

properties of the ionized trails emitted by a meteor as it passes through the Earth's

atmosphere. Every day nearly 1010 meteors pass through the atmospheric layer of the

Earth. When a meteor enters the atmosphere, it collides with air molecules producing a

trail composed of free electrons and positive ions. When the trail of ionization has an

orientation suitable for a given transmitter and receiver, reflection of the radio waves off

of the trail can be used for radio communication. The electron density of these particle

trails is great enough to reflect frequencies in the VHF range, 30-120MHz.

A meteor trail is categorized according to its electron line density. If the density is

low enough that the radio wave penetrates the surface and is reflected from each

individual electron within the trail, the trail is defined as underdense. These are trails

with an electron density less than 101" electrons/meter. If the electron density of the trail

is greater than 101" electrons/meter, the trail is defined as overdense. In this case, the

wave does not enter the interior of the trail, but is reflected from its surface. As the trail

expands, the resulting multipath causes an exponential decay of the amplitude of the

wave.

The type of trail is a factor in the duration of the trail as well as in the arrival rate

of meteors. The duration of the underdense trails is much shorter than the overdense

trails (an average of 0.5 - 1 second duration for underdense versus 1.5 - 2 seconds

duration for overdense trails). However, underdense trails occur much more frequently

20



HOW METEORS ARE USED FOR COMMUNICATION

-- / \/\

TRANSMr'TER RECEIVER

EARTH

Figure 11. Meteor Trails allow reflection of signals

than overdense trails (less than 2 minute intervals versus 20 minutes or more for

overdense) and account for a greater proportion of the throughput on most meteor burst

links. For these reasons, many of the meteor burst models use only the underdense trail

characteristics when calculating the received power capabilities giving a worst case result.

However, at ultra-high frequencies and short path lengths, or for systems that are subject

to high levels of man-made noise, overdense bursts can provide the majority of the

throughput.

The arrival rate of meteor bursts with suitable orientations for communications is

assumed to be a Poisson process. Thus, the interarrival rate has an exponential

distribution with a density function of [2]

where a is the mean interarrival time. Solving for the interarrival time:

2:



. I,,l= a) o -e (14)

tý=-a~ln(y) (5

where y is a random variable with a uniform distribution.

A default mean interarrival time for the model being constructed is assumed to be

8.5 seconds. This value was obtained by averaging the diurnal and seasonal values for

Oetting's work in the area [2]. The diurnal variations cause changes in the mean

interarrival time from 4 seconds at 8 a.m. to 20 seconds at 8 p.m. with two hour

adjustments in the mean rate. Seasonal variations cause changes from a low of 0.6 times

the mean interarrival time in February to a high of 2.25 times the mean interarrival time

in June with monthly adjustments.

The duration of the trails has also been shown to be an exponential distribution

[3]. As previously mentioned, the electron line density is a large factor in the length of

the duration. As the trail expands, an exponential decay of the amplitude of the wave

causes an exponential decay in the reflected signal power. The end of a trail is defined as

the time when the SNR falls below a given cutoff threshold. Using the Sugar equation [1]

for received signal power from an underdense trail, Mifler [3] has calculated the duration

of the trail as

t=r*( Bq2 ) (16)

SNR

Variables r and B are based on system parameters such as transmitter power, orientation

of the trail and the height of the trail. For this project, these variables are assumed to be

22



constant. The mean value, r, has been defined to be 1.5 seconds. The default value for

the SNR cutoff threshold is 10 dB. The variable q is the electron line density of the

meteors and is assumed to be greater than 10' electrons/meter. Due to the falloff rate of

overdense trails being different than underdense trails, rather than increasing the

complexity of the model, all meteors are assumed to be underdense, which provides the

worst case scenario for the model.

SHR OF A METEOR BURST S¥STEM

SNR 11)

pi

----- - --- - - ---------

Figure 12. The duration and arrival times of meteors are exponentially distributed.
T'he SNTR has an exponential decay.

4.2 Modelling a Meteor Burst System Using Markov Models

Stephen Tsai has shown that an N-state Markov model can be used to describe

errors on binary communication channels with memor". By evaluating certain statistics

of the channel such as the error free run distribution, or gap length distribution, a
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Markov model can be produced. A gap is defined as the number of O's, or error free bits,

bounded on each end by one error bit. The gap length distribution is the probability that

gaps of varying lengths will occur. The distribution has been shown to be exponential and

can thus be written as a sum of weighted exponential terms [4].

A meteor burst commurication channel can be modelled as a discrete time Markov

chain. The state space of that Markov chain can be partitioned into two subsets - an

operating state and an inoperative state - alternating between the two states, forming an

alternating renewal process. The first state is the inoperative or off state where no data

is transmitted. This retlects the periods when no meteor burst actiNrity occurs. The

second state of the model is the operative or reliable state where data is successfully

transmitted with a probability equal to the bit error rate [5].

Note that this model is very different from the theoretical binary communication

channel where data is constantly transmitted, the two states represent error-free and

error states, and the transition probabilities are the probability of transitioning between

the error-free and the error state. The inoperative state in the meteor burst model

represents the time periods when no meteor burst is present. For this project, the

assumption is made that data is continuously transmitted, so this represents an all error

state. Transition probabilities between the inoperative and the operative state are based

on probability distributions of a meteor occurring and the probability distribution of the

duration of a meteor trail.

In order to model the error transitions in the operative state, the state is further

modeled as a sub-stochastic model where the transition probability to an error state is
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equal to the bit error rate of the system. The number of states in the operative state is

dependent on the complexity of the channel, how many factors are allowed to vary in the

model, and the assumptions that are made about the given system. For this project,

assumptions have been made that the signal-to-noise ratio (SNR) of the system is not

constant, but rather has an exponential decay over the lifetime of the trail. It is assumed

that the BER of the system changes inversely with the SNR, so decays exponentially from

the beginning of the trail.

4.3 The Simulation Model

To accurately determine the error characteristics of a meteor burst channel, real

world data from an actual meteor burst channel system would be the ideal approach.

Only one system, the Janet System [6], transmitted data without any packetizing of data

or using an ARQ form of acknowledgement for correctly received data. Although this

data would have been beneficial in the analysis of error characteristics for actual

channels, the data was unattainable. Thus, a decision was made to develop a meteor

burst channel model using the appropriate equations for factors that affect the BER. The

output of the model could produce data with error characteristics that are similar to that

of a true meteor burst system that could be used as input to a series of programs

developed for producing Markov models from data communications error data. These

programs were developed in conjunction with this project.

User inputs into the simulation include the data rate and the amount of time for

the program to run. The default data rate is 1200 bits/second. Unit time for the
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simulation is defined as the amount of time required to transmit one bit or 1/data rate.

The program runs while system time is less than the amount of time the program is to

run.

When the program is started, system time is reset to zero. A normally distributed

random number is generated and then the time of the first meteor arrival is determined

by the equation

a-4ime-- - a.-.mean log(m) (17)

where amean is the mean interarrival time (8.5 seconds) and rn is the random number

generated. The default mean interarrival time for the model, 8.5 seconds, is based on

Oetting's work in the area and assumes a cutoff threshold of 10 dB.

The duration of the trail is determined in much the same way. A random number

is generated and the duration time is calculated as

d-ime- - d--mean*log(rn) (18)

where dmean is the mean duration time (1.5 seconds) and rn is the random number

generated. The default mean value of 1.5 seconds is based on data obtained from the

Comet system.

The system clock monitors the time of the simulation with new meteors being

generated every time a meteor is activated. This allows for multiple meteors to be active

concurrently.

For the simulation, we assume a strict channel model. Each bit is only

transmitted once and no error correction is done on any data. Transmission is continuous
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with no probing information or packetizing of data. Because no form of error correction

coding or multiphase shift keying is being utilized, the assumption was made that binary

decisions were only based on optimum detection of equal-energy orthogonal signals in

white Gaussian noise. Because of this assumption, we can determine the error probability

strictly from the total received signal energy and the noise strength [71. The SINR for any

part of the channel is thus a lower bound estimate of success probability.

The BER of the received signal is defined as inversely proportional to the time

varying nature of the SNR over the lifetime of the trail. The probability of error for a bit

when the meteor trail is active can be written as:

(19)

where sysI,., is the present simulation run time, on,, is the start time of the burst, and

durationt,, is the amount of time the trail will be operational. A normally distributed

random variable is generated and compared to the probability p,. If the value of the

random variable is greater than p,, an error is said to occur.

One hundred percent errors are assumed to occur when no meteor activity is

present. The probability of error during the lifetime of a trail is inversely proportional to

the SNR of the signal. An assumption is made that all trails start off with a probability

of error equal to zero and exponentially increase until the cutoff threshold is reached.

The output consists of 0 for non-error bits and 1 for error bits. A run length

encoding scheme is utilized for conrnression as the data is saved. When defining the
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compression scheme, several assumptions were made. Data was not to be collected in the

inoperative state as this data contains all errors, except to track the number of time units.

During the operative state, the BER is assumed to be low, so the data is assumed to be

primarily non-error bits, or O's. A count of the number of non-error bits is kept until an

error, or 1, occurs. At this point, the number of non-error bits is recorded followed by .,

followed by the number of errors ( usually 1) in an external file. The recording of the

error bit was necessary to track the bits at the end of trail.

The model was written in "c" on a Sun workstation using Drand48 as the random

number generator. This generator was chosen for the calculations as it seemed to

provide a fairly normal distribution, passing a Chi-square test with 10 degrees of freedom.

4.4 Analysis of Data from Simulation

A 200 second run was used to analyze the data output from the simulation. This

run length provided over i0 data bits which were collected in compressed form. This gap

data was then used as input to the Markov model production program. The process

produced a list of gap lengths and a best fit to the exponential equation. The coefficients

and exponents from this equation were used to produce a Markov model. The Markov

model mapped to the gap length distribution very well, but, the resulting Markov model

did not fully represent the nature of the errors. In the original data, the distribution of

gap lengths was exponential during the life of a trail. Thus, the probability of longer

gaps was much higher at the beginning of the trail and decreased as the trail decayed.

Having a gap length distribution only determines the number of gaps of each length and
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does not take into consideration time dependencies of the data. In Tsai's paper, the

distribution of gaps over time had a uniform distribution, whereas with meteor burst

systems, the distribution of gaps over time is exponential.

It was shown that in order to produce this exponential change in gap distribution,

a series of Markov models must be used with each matrix having individually

corresponding gap error characteristics. Since the distribution is constantly changing,

ideally an infinite number of Markov models would be needed to represent the change.

A series of Markov models was chosen as a possible way to model the exponential

change in gap distribution. The data generated for each trail by the simulation was

segmented into seven parts. Although this is not a true representation of the exact time

varying nature of the BER and graininess occurs due to the limited number of segments,

this is a way to try to interpret the time varying nature of the BER. Each segment has

uniform length along the life of a trail. Analysis of each Markov model derived from the

segmented data seems to indicate that a different segmentation scheme might be more

meaningful. Due to the exponential nature of the variation in BER, most of change

occurs during the first three segments of the trail. To more closely approximate this,

shorter segment lengths at the beginning of trail would allow a closer evaluation of each

segment.

4.5 Conclusions

Modelling a meteor burst communication system requires intricate knowledge of

the details of the system, which often are not available. Many of the factors involved
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must be assumed to not affect the distributions used in modelling. Without real world

data, true representations cannot be verified. The model represented in this paper has

shown that a single Markov model cannot be used to represent the burst error

characteristics of a meteor burst system without sub-stochastic models being imbedded

within the model.

5.0 N-Bit Bursts Over M-Percent Distribution

5.1 General Introduction

The idea of establishing some heuristic assumptions about the distribution of

errors within a given bit error rate has some appeal for use with the Error Injector Units

(EIU). That is, if the overall bit error rate (BER) is known, one might be able to

hypothesize the statistical distribution of errors that might occur within the burst, once

the burst has begun. While it is unlikely that such distributions would model any real

world data channel exactly, it somehow seems intuitive that such patterns are more

realistic than simple Gaussian models.

As an example, assume that a standard RS-232 data channel has an known overall

error rate of 10-. Further assume that we have reason to expect that the errors tend to

occur mostly in groups of two, with some single errors, and some three bit errors. The

problem is then to design a Markov model that will simulate an error distribution of this

sort.

30



5.2 Building the First Model

In discussing the burst error distribution, we will assume the standard error model

of:

y = x, + e,

where (x} represents the bit string of the original transmitted data. The data channel

corrupts the incoming data with interference and produces the output data string {y). The

string {e) is the error string. A one in the string (e) represents an error, while a zero

represents the absence of an error. The "+" operator represents modulo 2 addition or an

exclusive or operation.

Continuing the earlier example, with a BER of 10', let us assume an error

distribution that favors two bit errors (50%) versus single bit errors (25%) or three bit

errors (25%). The beginnings of this model are shown in Figure 13. There is a single

non-error state. The model would remain in this state with a probability of 1-BER. There

would be a probability of BER that the model would transition to some error state. The

transition to each error state is governed by the relative probability of an error of each

type and the BER. The probability of a transition to the error state where i error bits are

produced is labeled pi in Figure 13.

In computing the probability of transitioning to each error state, the number of

error bits generated in this state must be considered in order that the overall BER not be

exceeded. To make this point clear, consider a simple model that produces either one or

two bit error bursts. If the two error bursts are equally likely, one would be tempted to

set the transition probability to BERI2 for both single and double error bits.
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Figure 13. Three Bit Burst Model

Unfortunately, this does not work. Such an assignment would result in transitions to an

error state at a rate equal to BER, as would be appropriate, but half the time, the error

state would produce two error bits. This means that for each two error transitions (i.e.

one BER probability) we would get an average of three error bits. This would result in an

actual error rate of 1.5 BER. This is clearly unacceptable.

The probability of transitioning to each error state must be adjusted so that while

50% of the errors are indeed two bit errors, the overall BER must remain constant. These

goals can be achieved by computing the probabilities of transitioning to each error state so

as to take all these factors into consideration. The process proceeds as follows (assuming

that BER is known).
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First, we define the relative probabilities for a 1, 2, or 3 bit error. In the example

in question, this might be:

rp, = .25
rp 2 = .5
rp 3 = .25

Now we determine the relative ratios of errors of each type. To do this, we divide the

relative probabilities of each error type by the smallest error probability. If two error

probabilities are equal, as in our case, we use either smaller value as the divisor. From

this computation, we obtain Ri, which is the ratio of occurrences of 1, 2 and 3 bit errors:

R, = rp,/rp, = 0.25/0.25 = 1.0

R. = rp2/rp, = 0.50/0.25 = 2.0

R3 = rp3/rp, = 0.25/0.25 = 1.0

Now we must assume a BER distribution of errors that also meets the requirements of

the pi statistics above.

If we had a perfectly distributed group of errors, we would expect one three-bit

error burst, two two-bit error bursts, and one single-bit error burst in a complete set of

errors. To simplify the discussion, it is convenient to define the total number of error bits

that occur in one perfectly distributed set (EBIOS) as:

n
EBIOS = i(R,)
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i I I2.

where n is the number of bits assumed in each error burst.

Now, the total number of data bits (TNDB) over which this perfect distribution will

take place must be such that the overall BER remains constant. This leads to the

formula:

BER = EBIOSITN)DB

or TNDB = EBIOS/BER

Continuing with the example from above, the EBIOS would be computed as:

3
EBIOS = i(Rj) - ixi + 2x2 + 3x! = 8

i=-2

This value is easily explained by recalling that there will be one error burst that produces

a single error bit, two error bursts that produce two error bits, and one burst that

produces three error bits. Hence, there will be eight errors in one perfectly distributed

set.

This ratio of errors will retain the desired relative probabiliie., 1.• %,, !,A der to

maintain the proper BER rate, these errors must be distributed over the appropriate

number of data bits. In our example, number of bits over which this is distributed is

computed as:
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TNDB = EBIOS/BER = 8/10.' = 8 x 10' = 8,000 bits

With these values in hand, it becomes possible to compute the probability of

transitioning to each of the three different error states. These values are computed from

the formula:

pi = 1R / TNDB.

For the example, these values compute to:

p, = R, / TNDB = 1/8,000 = 1.25 x 10'
p2  R2 / TNDB = 2/8,000 = 2.50 x 10'
p3 = R.3 / TNDB = 1/8,000 = 1.25 x 10'

These values will be used later to construct a Markov model that will produce the desired

error distribution.

It would be instructive to utilize these computed probabilities to recompute the

overall BER for the entire model just to verify that the BER is as intended. With a model

such as the one under discussion, the overall BER is given by the formula:

n
BER = Z i(pl) =

i=l.

- .(1.25x10') + 2(2.5xO0- 4) + 3(1.25xI0•4 )
= (1.25 + 5 + 3.75) x 10-4

_ i0-
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Since this value is equal to the original BER, we may assume that the mathematics are

correct.

The model shown in Figure 13 is somewhat oversimplified. The nature of Markov

models is such that each state can produce only one output. In our case, that is either an

error (1) or a non-error (0). In Figure 13, two of the states indicate the production of two

or three bits of output. Since this is not consistent with the Markov model, these states

must be replaced with a sequence of states, each of which produces a single bit of output.

Because the errors may come in bursts of up to three bits, the transition to an

error state may consist of a sequence of states that will produce the error string desired.

That is, in Figure 13, the state labeled three error bits must actually consist of three

states in sequence, each of which produces a single error bit. In addition, the state

labeled two error bits would similarly be two states each of which produces a single error

bit.

The transition from the non-error state is controlled by p, as computed above.

Once a particular error sequence has started, however, the transition to the next state of

the sequence is pre-determined. That is, once a two or three error bit sequence begins,

the cycle continues through all the states required to produce the correct number of error

bits, before returning to the non-error state.

Fortunately, it is possible to combine the error states described above. If we think

of the three error bit sequence as being the basic string, it is possible to utilize part of this

string for the one and two bit error sequences. That is, the one bit error state is simply

the last state of the three bit cror sequence. The two bit error state is the last two states
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Figure 14. More Complete Three Bit Error Model

of the three bit error sequence. In fact, it is relatively easy to modify the model from

Figure 13 so as to provide the needed error bit generations. This revised model is shown

in Figure 14. Note that the transition from the three-bit state to the two-bit state, and

from the two-bit state to the one-bit state both carry a probability of 1. This insures the

correct, sequence of states required to produce the required number of error bits in the

burst.

The final parameter missing from the model in Figure 14 is a transition to the

appropriate state at the end of the error burst. One possibility would be to transition to

the appropriate error or non-error states based on the same probability as in the non-

error state. This at first seems reasonable, since the next state would normally be

determined stochastically. However, a little reflection reveals that this would be an
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inappropriate transition. The problem created by such a transition is that it would permit

a second burst to immediately follow the first. If this is allowed to happen, then two

three bit bursts could be interpreted as a single six-bit burst. This is clearly not desirable

in a model that is intended to produce bursts with a maximum length of three bits.

To prevent the generation of bursts that are longer than desired, it is necessary to

insure that there is always at least one zero bi, generated after a burst has been

generated. As we shall see later, the actual number of zero bits required is a function of

several variables, but there will always be at least one zero bit after each burst.

Figure 15: Final Three-Bit Error Model.

Therefore, in the case in question, the appropriate transition from state 2 will

always be back to state zero. This will insure the generation of at least one zero bit after

the generation of any burst. This final state transition is indicated in Figure 15.
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Given the procedure above, the parameters for the heuristic Markov transition

table are easily computed. The table for the sample problem from this discussion can be

constructed using the probabilities computed in the preceding section. The resultant

values are given in Table 1. State I is the non-error state, and states 2 through 4 produce

1 through 3 errors respectively.

Probability of transitioning to state:

1 2 3 4
Current non-error one error two errors Ithree errors
State

1 0.9995 0.000125 0.000250 0.000125

2 1 0 01 0o

3 0 1 0 0

Table 1: Markov Table for Example

This specific table can be generalized to include any specific number of error bits in

a burst, any BER, and any desired relative probability between bits. The pi values

computed from the formulas above will make up the first row of the table as the

probabilities of transitioning from the non-error state to any one of the error states. The

value 1-BER will be inserted into the first table position. In this table, n would represent

the maximum error burst size and can be extended to any desired size.

The ease of constructing this type of Markov table lends itself readily to computer

implementation. For purposes of this project, a program was written in the "c" language
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to perform the computations discussed above. This program accepts input values for the

BER, the maximum number of error bits (n), and the relative error probabilities for 1, 2,

n error bits. The output from the program is a Markov table in a format similar to

that given in Table 2 that satisfies the given parameters.

Probability nf trA nsit.ionina to state:

1 2 n f n+1
Current non-error one error n-I errors n errors
State

1 1 - BER P1 Pn-, P.

2 BER P1  Pn-, I P

3 0 1 0 0

0 0 0

n 0 0 0 0

n+1 0 0 0 1 0

Table 2: Generalized Markov Table

In order to test the output produced by the Markov table generation program, a

second program was written that utilizes the Markov table from the first program to run

a computer simulation of the errors that would be produced by this model. The results

from the second program indicate that the Markov tables produced in the first program

do, in fact, realistically model the hypothesized error performance.
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5.3. Shortcomings of this Model

There are two major shortcomings with the model just described. In order to

understand these shortcomings, a more precise definition of an error burst is required.

Generally speaking, an error burst is considered to be a set of error and non-error bits

that occur together in groups. By definition, the first and last bits within the burst are

always a 1, representing an error. Between the beginuring and ,- ending error bit. ofte

burst, there will be n-2 "fill" bits that may be either error bits or non-error bits.

Within the burst, the error bit density, or A., is defined as:

A0 = number of error bits/burst length

The A, value is used to define the limits of a burst. Without a definition of A0, it is

impossible to determine whether the error string "...10001..." represents a single burst

with five bits (two error and three non-error) or two bursts, each with a single error bit

separated by three non-error bits. In this particular example, if A0 <= 0.4, then the string

in question represents a single burst; otherwise it represents two separate errors.

Considering this definition of a burst, it becomes obvious that the proposed model

suffers from a lack of flexibility pertaining to A.. This model always produced a burst in

which all the bits were error bits. In other words, A0 was always assumed to be one.

Hence, no non-error bits ever occurred in the burst. This prevents generation of four-bit

error bursts such as 1101, 1011, 1001, etc. On real world data channels, it appears that

most error bursts do contain some correct data bits. Frequently up to 50% of the bits

within the burst may be non-error bits.
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Markov models for producing bursts containing both errors and non-error bits are

reasonably easy to design, and the earlier model could be extended to cover this situation.

However, as the number of combinations of n-bit errors increases, the number of states

required in the model increases proportionally. For example, to generate four-bit bursts

in the earlier model requires only five states: the non-error state and the four different

error states.

If we wish to include the generation of non-error bits in the burst, we must

increase the number of states in the model. In the case of the four-bit model, two

additional states must be added to account for the possibility that the center two-bits may

be either zero or one.

In a general n-bit burst model there must be three fixed states; one for the start

state and one each for the first and last error bits. Between the first and last bits, there

will be n-2 bits in the burst. The model must provide for the possibility that either of

these can produce zero or one. This requires an additional n-2 states. Hence, the total

number of states required is:

States = 2(n-2) + 3 = 2n-1

For n=5, the number of states required is 9.

Even this number of states exceeds the number available in the EIU, but the

situation gets even worse. Following any burst of length n, there must be a minimum

number of non-error (MLNZ) bits generated to insure that the second burst is not
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interpreted as continuation of the first burst. The number of zeroes required is dependent

upon the number of error bits in the burst and the value of A0 chosen in the definition of

the burst. The mathematical Lor,•,.ua used to e.termine the .length of the "gap

between any two bursts can be computed from:

MNZ > (int) (errorbits+l)/Ao - (bits-in-burst + 1)

Notice that the number of non-error bits that must follow the burst will vary depending

on the number of error bits within the burst. If, for example, we use a A0 = 0.5 with a

four-bit burst, there will have to be six non-error bits following a burst of "1111", but only

two non-error bits must follow the burst "1001".

Using the formula for MNZ, the early model could be modified to produce the

appropriate number of zeroes following each burst. Since each zero generated requires

another state, the appropriate number of zero-generating states is affixed to the last state

of the model, and the problem is largely solved. Determining the state transitions for

these new states is fairly complex, since it depends on both A, and the number of error

bits generated. There is, however, a practical consideration that is far morE significant

than the complexity of computing the state transition probabilities.

The more significant problem in expanding the earlier heuristic model is that

either of the modifications discussed above will add a significant number of states to the

finite state model represented by the Markov table. Since the Error Injector Units on

which this model is intended to run are restricted to eight states, it is obvious that the

heuristic model described earlier is severely limited. The maximum number of bits that
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can be produced with A. = 1 is seven. If A0 is less than one, then the number of bits

permitted in the burst must be further restricted, and the state transitions to accomplish

the exac* required number of fill bits becomes more complex.

5.4 Efforts toward an Improved Heuristic Model

Based on the shortcomings% , discussed ab , it. was decided to try another approach

to building a heuristic model. It was felt that this approach could build on the other

efforts in the project by using the data reduction procedures for real data to reduce data

from a non-Markov model that would produce error burst of the appropriate length and

characteristics. This approach involved the following four steps:

I. Develop a deterministic non-Markov model that will generate error data
with the desired characteristics.

2. Use this model to produce error strings that conform to the desired
patterns.

3. Use the techniques currently under development for raw error data
reduction to reduce the error strings produced from the non-Markov model
to the format required for the production of an equivalent Markov model.

4. Verify that the Markov model so produced generates the error strings of the
correct type.

Using the approach outlined above, the development of a non-Markov model for

generating heuristic error data was undertaken. Some of the procedures for computing

state transitions used by the earlier Markov model were incorporated into this model.

Other techniques, particularly with reference to the generation on bursts with A'<1 had to
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be developed specifically to support this approach. In addition, some suppoi: programs for

testing and analyzing output from the model had to be developed.

One step in this process involves computing the minimum number of data bits

(MNDB) that would include the minimum burst set (MBS), and still retain the correct

overall BER. This process becomes somewhat more complex when longer burst lengths

are included. Consider the case for burst lengths of up to three bits, with one, two, and

three-bit bursts being equally probable. The complete error burst set now includes four

elements, 1, 11, 101, 111, because there are two different three-bit errors that must be

included in the set. But, since one and two-bit errors must be equally probable with the

three-bit errors, and since there are two three-bit errors, each of the one and two-bit

errors must also occur twice. Hence the MIBS becomes {1, 1, 11, 11, 101, 111). This set

contains eleven error bits. Therefore, the minimum number of bits required in one set is

11V.001 = 11000. From this value, the absolute probability of the occurrence of an error

burst of each length can be computed.

All these relatively intuitive ideas can be incorporated into a computer program

that can perform these computations relatively easily. It is not really necessary to

compute the MBS, only the relative number of occurrences of the bursts of different

lengths. To compute this relative frequency of bursts of different lengths (r(ij), it is only

necessary to determine the burst length with the smallest relative probability

(minimum(rp)). Since this burst length will occur only once in the MBS, it should have a

r[i] value of 1. By definition, the other burst lengths will occur at least as many times at
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the burst length representing minimum(rp). The exact ratio of the other burst lengths

can be computed from the formula:

rni] = rpli]/minimum(r)

Using these values will insure that the appropriate ratio of occurrences of the various

length of data bursts will occur in the MBS.

Another problem that had to be addressed in this model was computing the

number of fill bits that had to be generated after each burst. After the requisite number

of burst bits had been generated, the model also had to generate the minimum number of

zero bits immediately following the burst to insure that the generated burst would not be

combined with some subsequent burst to form a burst longer that the speciied length.

The minimum number of zeroes was computed based on the number of error bits within

the burst and the desired value of A. as discussed earlier.

The mathematics for the heuristic model were determined, and a computer

program (hcomp.c) was written in the "c" language that embodies these mathematical

parameters. This program was then used to generate the table of values needed to

produce the relative probabilities needed for the burst generation model. This program

was tested and performed as expected.

An initial "test of concept" program (heurwork.c) was written and used to accept

the output from hcomp.c and to produce error strings based on the input parameters used

in hcomp.c. The output from heurwork.c was piped to two other programs written to
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validate the output from this model. A program called burstlist.c was used to list the

bursts as they occured within the output stream from hcomp.c. This program was

somewhat limited, since the BER must be relatively high in order to produce enough data

ior visual validation. The program produced the expected results.

Another program called burstcount.c was used to count the number of bursts of

different lengths and types. This program was appropriate for examining the model

output for lower error rates and longer strings. Preliminary results were also positive

when burstlist was used to analyze the output of the model.

Finally, the output from the second heuristic model was fed to the gapeount

program, and the gap length data collected in a manner similar to that used when testing

the validity of a Markov model. The gap lengths from this model were then fed into the

data reduction procedure in an attempt to build a Markov model that would match the

performance of the second heuristic model. The output from this Markov model was

collected and examined, and at this point, a significant problem was discovered. Thc

output from the Markov model did not resemble that of the original heuristic model.

When the data produced by the heuristic model was analyzed in gap data format,

it became obvious that the gap data produced by this model was not at all like the data

that had been collected from the real-world data communications channels. The real

world gap data fits an exponential distribution. Because of the finite limitation on the

number of error bits in a burst, the gap data from the heuristic model is very different.

When the data from the heuristic program was used in the curve fitting program,

the procedure did produce the best exponential fit to the data possible. Due to the fact
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that the heuristic gap data was not truly exponential in form, the resulting fit was quite

poor, and the resulting Markov model did not accurately model the performance of the

heuristic model.

In retrospect, it cculd have, been anticipated that this approach would not work.

An analysis of the graphs of the gap data from the heuristic model clearly indicates that

the data is not in exponential format. Unfortunately, it was necessary to invest

considerable time and effort into developing the heuristic model before a Lomparison of

the two outputs was possible.

It now appears that an important point was overlooked in the initial development

of the non-Markov heuristic model. This point is that while all Markov models are

stochastic processes, not all stochastic processes can be modeled with a Markov model.

The Markov property for a stochastic process requires that the next state determination

in the Markov model be uniquely determined based only upon the current state of the

model, and not on a history of any other states that may have been passed through in

order to get to the current state. Unfortunately, this property is violated in the n-bit

burst over m-percent distribution model.

To understand why this is so, consider a model that is generating bursts with

lengths of either one, two, or three bits. If the model is in a state that represents one of

the states within the generation of a burst (i.e., an error state), the next state transition

cannot be determined without some knowledge of the preceding states. If the state that

the model is in represents the first bit of a burst, then there is a finite, non-zero

probability that the next state will also be an error state. On the other hand, if the state
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that the model is in represents the third bit of an error burst, the probability of a

transition to a subsequent error state must be zero, or the model may produce a burst of

length longer than three bits.

Hen'e, - model that produces a burst with a fixed limit on the maximum length of

the burst will have the next state determined by a combination of the current state and a

history of the states that the model has passed through in order to arrive at this state.

This violates the Markov property and would seem to preclude a general Markov model

that will produce n-bit bursts over m-percent distributions.

This concept was reenforced by some results obtained from analyzing the output of

the Tsai -F Markov model which was run on the Markov simulation program,

rawmarkov.c. The output from this model was piped to the burstcount program and

produced some very interesting results. While most of the error bursts tended to be in the

range of just a few bits, usually from five to ten bits, this model frequently produced error

bursts with lengths of greater than 20 bits.

What this means is that in the Markov models that we have been using to

represent real world data communications channels, there is no upper limit on the length

of the burst that may be produced. Regardless of the number of error bits that have

already been produced, the probability that the next bit will be another error bit will

always be greater than zero. These results would seem to indicate that the concept of a

n-bit burst over m-percent distributions may not be representative of the characteristics of

a real data communications channel.

49



5.5 Conclusions

The major results of these limitations are that the original model is restricted to

n<= 7 and Ao=l. While not as general as we had hoped, this model may be of some value

in testing data coLmmunications protocols where errors may bL assumed to be of this form.

It is, unfortunately, not clear exactly where such error patterns might occur.

The original model can also be modified slightly to produce some error bursts with

non-error bits in them. For example, the model from Table 1 could easily be modified to

produce error strings of the form "101" by the addition of a new state 3a. State 3a would

be a non-error state, and the transitions from state 4 would be modified to 0.5 probability

of a transition to 3 and a 0.5 probability of transitioning to state 3a. Hence, half the time,

the three bit burst generated by this model would be of the form "111" and half the time

would be of the form "101'. A minor adjustment would have to be made in row one of the

table to take into account that the that two transitions to state 4 would produce an

average of five error bits, but that is relatively easy to fix. Unfortunately, if we attempt

to extend this technique for four or more error bits, the number of states needed then

exceeds the number available in the EIU, so the technique hardly seems worth the effort.

All things considered, the original model probably pushes the n-bit error out of m-

percent distributions concept about as far as it will go with the eight state limitation of

the EIU. Further, any attempt to pursue the n-bits errors over m-percent distribution

model now appears far less attractive than it did at the beginning of this project. An

examination of the output from the non-Markov heuristic model which performed

precisely as it was programmed to do, reveals that it has little in common with the error
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characteristics that we have been able to examine from the real world data

communications channels. While there is always the possibility that further research in

this area may bear fruit, it now seems unlikely that such a model would be easy to

develop or very useful when developed.

6.0 Summary

In summary, the project was a limited success. The technique and procedures for

building a Markov model from the errcr gap data were quite successful. A computer

program to perform the required curve fitting was identified, and was found to be quite

satisfactory. Good progress was made in determining a method for making the initial

guesses for the non-linear regression parameters required for the curve-fitting program.

In addition, the technique for evaluating the accuracy tZ the Markov model in

representing the original error gap data proved to be satisfactory. Further work in :he

accuracy measurements will continue with Ms. Burns' Masters Thesis, and the results are

expected to confirm the conclusions from this report.

Significant work in the area of the meteor burst Markov model was also

accomplished. Unfortunately, the time dependent nature of the error rate characteristics

make it very difficult to develop a single Markov model that will effectively mimic the

channel error characteristics of a meteor burst communications channel. As an

alternative, the use of multiple Markov models that are stored in the EIU and swapped

on a time dependent basic will give a workable approximation of the characteristics of'

such a channel. Using eight Markov models that represent the varying phases of a
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meteor burst channel communication capabilities will give a reasonable approximation of

the meteor burst channel.

The N-bit burst over M-percent distribution Markov model suffers from the limited

number of states available in the EIU. With only eight states, models with error bursts of

up to seven bits are possible, with differing probabilities for error bursts of one, two, ...

seven bits are possible. This model is limited to a A, value of 1.0. Models with shorter

bursts and A, < I are possible but are quite limited as to burst length andlor A%.

Overall, the best technique for modeling data communications errors remains one

of collecting error gap data from live transmissions, and then using the ;echniques

proposed in this report to reduce that data to an appropriate Markov model. With an

adequate quantity of data collected, it should be possible to model enough different

Markov models to make the Error Injector Units a viable vehicle for developing robust

protocols over a wide variety of data communications channels.
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